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In this paper acoustic shock waves are considered in a variable area duct which contains 
near sonic flows. The problem treated here is modelled after an aero engine inlet. It is known 
experimentally that area variation of a duct and high Mach number mean flow can reduce 
acoustical energy yielding substantial noise reduction. One possible reason for this is acoustic 
shocks. The use of an explicit numerical method is described which is very accurate and also 
captures shocks reasonably well. Comparisons of the results are made with an existing 
asymptotic theory for Mach numbers close to unity. When shock occurs reduction of sound 
pressure levels are shown by examples. mp 1985 Academic Press, Inc. 

1. INTRODUCTION 

Recently a numerical solution for the propagation of sound in a variable area 
duct which contains a high Mach number subsonic flow was studied by the authors 
[4]. The nature of the wave propagation was nonlinear. This note is a continuation 
of this work and presents some results concerning computations of shocked waves 
in this situation. The model problem studied here and in [4] serves the purpose of 
the study of an aero engine inlet. Briefly there is a flow in a variable area duct and 
acoustic waves propagate upstream of this flow. The acoustic waves are generated 
by an incident plane wave on the left of the duct and leave the right end without 
reflecting. It was first observed experimentally [3] that with a given flow and a 
proper choice of area variation it is possible to attenuate the sound intensity as 
much as 20db. Theoretical reasons for this mechanism of reduction of noise level 
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are still under investigation. They are complicated by the fluid equations which are 
the Navier-Stokes equations. However, in the inviscid limit it is believed [7, 81 
that acoustic shocks which result in energy loss is one such possibility. Though 
sound level attenuation was not shown in [7], they did show energy loss when 
shocks occur. The work in [7] is based on an asymptotic theory and valid for 
Mach numbers close to unity. In a later experimental study [S] it was shown that 
even for Mach numbers far less than unity (about 0.7) one still obtains substantial 
sound reduction. Thus a numerical study was undertaken to calculate solutions for 
all Mach numbers. 

There has been only a little published in the literature for this flow configuration. 
The classical Fubini solution uses an asymptotic expansion to obtain an 
approximate solution to the one-dimensional gas dynamic equation for a uniform 
duct. Polyakova [lo] made extensions for problems with flow and Blackstock [ 1 ] 
for the case of shocks. For variable area ducts Myers and Calleghari [S] used the 
method of matched asymptotic expansions. This reference was the only source for 
any constructive shock solution in the literature. Recently parallel to our work 
Walkington and Eversman [12] carried out computations of this situation. Our 
study yields similar results but we believe our approach is simpler for the reasons 
that we solve a system of two equations using isentropic relations instead of a 
system of three equations. This is discussed in the next section. Moreover, the 
scheme used here has more spatial accuracy than the one in [12]. This is par- 
ticularly true when we seek smooth solutions, since we do not add any artificial 
damping for these situations. The authors would like to point out that there has 
been other work namely Nayfeh et al. [9] to compute the nonlinear, but 
unshocked solutions for this type of configuration. 

In this work we describe the model briefly and indicate the assembly of the 
numerical method. We emphasize the approach we took for obtaining boundary 
conditions. We present numerical results obtained for shock cases and compare 
with the asymptotic results of [7]. We also present noise level distribution over the 
duct and demonstrate the noise reduction in the situation of a shock. 

The authors would like to acknowledge useful comments and suggestions of 
referees. 

2. EQUATIONS OF MOTION 

The total flow field is governed by the inviscid, compressible Euler equations. 
They consist of equations for continuity, momentum, and energy. The energy 
equation can be replaced by isentropic relations provided one is seeking only weak 
shocks. This is exactly the case in acoustics where only weak shocks are the central 
goal. Strong shocks causes disturbances in the main stream and the meaning of 
acoustics will not be valid. This philosophy was adapted in [4] and it yielded a 
system of two equations for acoustic density and velocity rather than three 
equations thus reducing computational costs. 
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The situation which is of interest here assumes a quasi one dimensional flow. 
Flow configuration is depicted in Fig. 1. In this a steady flow moving from the left 
to right and the acoustic waves are propagating upstream of the flow from a har- 
monically varying source (plane wave). Then the total field is governed by the 
following equations, where A(x) is the area variation of the duct 

aii a ii2 -+- -++- 
( 

Y PO -y--l =o 
at ax 2 r-ipf > 

(2.1) 

(2.2) 

and the pressure is determined from 

(2.3) 

Here p, U, and jj are the total density, velocity, and pressure, respectively, and the 
quantities with subscript zero denote ambient values. We divide these flow quan- 
tities into “mean” and “acoustic” parts. That is, if mean flow quantities are assigned 
a subscript s then 

u=u,+u 

P=PS+P (2.4) 
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FIG. 1. Variable area flow duct (a) coordinate geometry, and (b) area variation. 
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The mean flow is assumed to be steady and they satisfy the following steady state 
flow equations: 

fp,p”)+~g=o 
a u2 

( 
rp!! Y-1 

;i;z Y+y-lpf > 
=o 

(2.5) 

(2.6) 

p,=Pqp;. 
P6 

(2.7) 

Then Eqs. (2.1 b( 2.3 ) yield the following nondimensional acoustic equations, 

P,+(u,P+P,u+uP),+(u,P+P~ufuP)f~=O (2.8) 
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Here c, is the local sound speed in the flow and is given by 

(2.9) 

(2.11) 

The details of derivation of these equations are available in [4]. Note that in 
these equations density and velocity are scaled by their ambient values p. and C,, 
the pressure is scaled by pOC& and the area by the throat area A, of the duct. 
Moreover the distance and time are scaled by w/C, and by w, where w is the fre- 
quency of the source. This frequency corresponds to the engine noise source. In this 
nondimensionalization process the meanflow becomes the Mach number dis- 
tribution and the solution space becomes the interval [0, L], where L is the duct 
length multiplied by w/C,. These equations are to be solved subject to the following 
boundary conditions. At x = 0, 

40, t) =f(t) (t > 01, (2.12) 

At x=L, 

B(u, PU, t) = 0, (2.13) 

where f(t) is the source variation and (2.13) dictates a nonreflective (impedance 
type) condition. We shall derive this condition in Section 4. 
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3. NUMERICAL SCHEME 

We shall briefly indicate the numerical method used in this work. This method is 
simply an extended version of MacCormack’s method with fourth-order accuracy in 
space and second-order accuracy in time (see [2]). One can minimize the trun- 
cation error in time by choosing sufficiently small time steps (or lower CFL values) 
to get the fourth-order accuracy in space. Let the spatial discretization of the axis of 
the duct be given by xi = (j- 1) L/J (j= l,..., J). Let us define forward and 
backward flux difference operators by 

P?(f)=7f--!+,+fi.,. (3.1) 

Here the plus “sign” denotes forward and “minus” sign denotes backward 
operations, respectively. Then for a single equation of the form 

%+fX=k (3.2) 

the scheme works as follows: 

This has a backward predictor and a forward corrector. In the next At/2 time step it 
is changed into a forward predictor and a backward corrector as follows: 

u(l)=uy+‘/2 
J J 

~~~p/+(f”+1,2)++!h”+1,2 ; 

1 u7+‘=- 
J 

[ 

.“+l,2+uc’l-~p:(f”‘)+drh”‘]. 
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(3.4) 

In these formulas superscripts n, n + f and n + 1 denote quantities evaluated at 
times n At, (n + t) At and (n + 1) At and the superscript (1) denotes the predicted 
values. It is pointed out in [9] that alternating formulas (3.3) and (3.4) at each 
time step is necessary to achieve fourth-order accuracy for nonlinear problems. 

We note in (3.3) and (3.4) the flux difference operator P+ is not defined for 
j = J- 1 and j = J and P- is not defined for j = 1 and j= 0. At these points fluxes 
are extrapoled according to the following third-order formula: 

fj=%+1-%+2+4&,rfjf4 (j=O, -1) (3.5) 

hi,, =4fr-w-, +4fi-2-h-3 (j= J, J+ 1). (3.6) 
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When these extrapolations are applied to define the fluxes then the steps (3.3) and 
(3.4) are valid for all grid points j= 1 through J. 

This process is then applied to Eq. (2.8) with 

l4=p 

f=wJ+Psu+uP 

and 

h= -(u,p+p,u+up)f~ 

and to (2.9) with 

and h=O. 

Artzjkiul Viscosity 

Similar to fluid dynamic calculations, in order to capture shock waves without 
oscillations, viscous damping terms are added to the difference equations. The 
numerical scheme above is a dissipative scheme and therefore we will show results 
with and without artificial viscosity. A second-order viscous term is used herein. If 
the Eqs. (2.8) and (2.9) are written in the form 

where 

w,+f(wj,=qw) 

(3.7) 

w= P 

0 u ’ 

then the artificial viscous term added to (3.7) is 

(3.8) 

where v = 0( 1). We differenced this quantity according to the following formula: 

(dx)2v&( IPxl g)-; CIP+I-Pjl twj+Imwj) 

-IPj-Pj-11 (wj-wj-l)l. (3.9) 
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This is a second-order formula. This formula to be used in both stages of our 
scheme up to the boundary. The added viscosity terms tend to reduce the accuracy 
of the scheme. Nevertheless it provided better results than other types of viscosity 
models, i.e., gave a sharper shock with reasonably accurate solutions in the smooth 
regions. We shall see this later in our comparison with the asymptotic method 
of [7]. 

4. BOUNDARY CONDITIONS 

In this section we consider some questions concerning boundary conditions. First 
we need a nonreflective boundary condition at the exit section of the duct. Next we 
need boundary conditions appropriate to the numerical scheme. These are accom- 
plished by obtaining characteristic variables for the system (2.4) and (2.5). We 
linearize this system to get 

where 

wt+Aw,=O, (4.1) 

A= and w= 

The eigenvalues of this matrix are 

I, =u,+c, and L =ll,-cc,. 

We note that U, < c, thus AP is strictly negative. The signs of these eigenvalues give 
the characteristic directions of the flow. At x = 0, A + > 0 gives the inflow direction 
and 2 _ < 0 gives the outflow direction. Similarly at x = L, II + > 0 gives the outflow 
and 1- inflow directions, respectively. The matrix formed by the eigenvectors is 

T= 

so that T- ‘AT is diagonal. The characteristic variables are then 

v= T-‘w. 

If 

(4.2) 

(4.3) 

Ul 
v= 

0 02 
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then 

(4.4) 

Here ul, v2 corresponds to the eigenvalues 2, and I _, respectively. At x = L, v2 is 
the inflow variable. Setting u2 = 0, i.e., 

p IA 0 ---= 
Ps cs 

(4.5) 

is exactly the nonreflective condition stated by the general form in (2.13). In linear 
acoustics this is known as the impedence condition. 

For the numerical scheme it was found effective prescribing the boundary con- 
ditions in terms of these variables vi and u2. At x = 0, v2 is computed through an 
iteration. Let us call this value u;. Thus 

P u ---=o' 
ps c, 2’ (4.6) 

But u is prescribed at x = 0, 

l4=f: (4.7) 

Solving (4.7) and (4.6) for u and p we have 

U=f; p=ps u;+; . 
( ) s 

Similarly at x = L we compute u,; this gives 

We solve (4.5) and (4.10) to obtain the values of u and p at x = L. They are 

P=PsvV2 

u = c&/2. 

(4.8) 

(4.10) 

(4.11) 

Together with these conditions the solutions were started at a state of rest and 
iterated over 6 periods to obtain the results discussed in the next section. 
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5. DISCUSSION OF RESULTS 

The procedures developed in the previous sections were applied to a particular 
geometry called a Crocco-Tsien duct. A detailed description of the contour of the 
duct is available in [6]. This contour is designed in such a way that the mean flow 
accelerates linearly to Mach number unity at the throat. In particular, for the exam- 
ples given here the entry Mach number at the exit section was -0.50 and at the 
throat -0.90 ( =M,). Here the “minus” sign denotes the flow in the negative x 
direction. 

Figure la shows a typical configuration of the duct. Figure lb shows the area 
variation. This geometry has an exit/throat ratio about 1.32, so that this area 
variation provides a gradual choking of the flow. In this case the Mach number dis- 
tribution becomes as depicted in Fig. 2. With this area variation and Mach number 
distribution, the steady flow equations satisfied by ps and U, (Eqs. (2.5) and (2.6)) 
were solved explicitly (see also [4]). 

As we discussed previously, the finite difference algorithm is compared with the 
asymptotic theory developed in [7]. Since the typical nonlinear situation arises at 
higher sound pressure levels and Mach numbers approaching unity, in this theory a 
small perturbation parameter was chosen as (1 - IM,I), where M, is the throat 
Mach number. Comparisons for a value for M, = -0.90 are given in Figs. 3 and 5, 
respectively. The strengths for an equivalent sound pressure source located at x = 0 
(Fig. la) are roughly 149 and 156dB, respectively. Corresponding to Eq. (2.12) they 
have the form 

f(t) = A cos t, 

where A is the amplitude calculated according to the source strength. In both 
(149dB and 156dB) cases shocks wre predicted in [7]. In these figures the time 
history of the velocity over a period (27~) is given. The velocity is normalized by 
(1 - IM,l)’ since the acoustic velocity is small in magnitude. Thus the actual value 
of the acoustic velocity is of the order lop3 or less away from shocks. Thus an 
accurate scheme is always preferred for these calculations. However, in the cases of 
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FIG. 2. Mean flow Mach number M, = 0.90. 
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FIG. 3. Acoustic particle velocity, 149dB source, M, = -0.90. 
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FIG. 4. Acoustic pressure, 149dB source, M,= -0.90. 
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FIG. 5. Acoustic particle velocity, 156dB source, M, = -0.90. 
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FIG. 6. Acoustic pressure, 156dB source, M, = -0.90. 

shock waves, we settle for a little less accuracy to improve the shock structure (i.e., 
second-order). Thus the purpose of using a fourth-order scheme is to improve the 
accuracy of smooth solutions in which case the artificial viscosity will not be used. 
The solid lines in these figures are the numerical solutions and the other (see Figs. 3 
and 5) are the asymptotic solutions computed at x = 0.75L and at the exist x = L, 
respectively. The difference scheme we used itself is a dissipative scheme. We carried 
out the computations without artificial viscosity terms in the algorithm. For the 
case of 149dB source the results are shown in Fig. 7. The comparison is still good in 
the smooth regions. Results shown in Figs. 3 and 7 also validate the fact that the 
amount of added artificial viscosity did not affect the physics of the wave nature. 

Finally, Figs. 4 and 6 show the overall sound pressure level (dB) in the duct. 
Figure 4 corresponds to the shock case of 149dB sound source. This is a very weak 
shock case. At the exit we see a 2dB sound pressure level reduction. Figure 6 shows 
the sound pressure level for a 156dB source. In this case we see a sound pressure 
level reduction about 5dB at the exit. These results show that the higher the sound 
source level one obtains substantial sound reduction through loss of energy due to 
shocks. 

Extension of this work in two dimensions is in progress by the authors. The 
results will be reported elsewhere. 

q ASYMPTOTIC THEORY (ref. 7) x/L=0.75 
o ASYMPTOTIC THEORY (ref. 7) x/L=l.OO 
-FINITE DIFFERENCE 

0 n/2 * w2 2n 

TIME t 

FIG. 7. Acoustic particle velocity without artificial viscosity, 149dB source, M, = -0.90. 
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